Survey Meter 3009A / 3009A-SV

Rugged Radiography Survey Meter
Internal GM detector
Portable, battery-powered, and transistorized

Detects: X-Ray and Gamma
3 – Operating Ranges (x100, x10, x1)
Range: 0 to 1,000 mR/hr

Available Options: Model 3020 Headset for personal audible monitoring in high noise areas

Environmental Effects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>-10°C to 50°C</td>
</tr>
<tr>
<td>Humidity (Non-Condensing)</td>
<td>20 to 95%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 20%</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>± 10%</td>
</tr>
<tr>
<td>Calibration</td>
<td>± 20%</td>
</tr>
<tr>
<td>Linearity</td>
<td>± 20%</td>
</tr>
<tr>
<td>Exposure Rate Limit</td>
<td>100 R/h (1 Sv/h)</td>
</tr>
<tr>
<td>Warm up time</td>
<td>None</td>
</tr>
<tr>
<td>Response time</td>
<td>5.4 sec time constant</td>
</tr>
</tbody>
</table>

Physical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual</td>
<td>2.62" round meter</td>
</tr>
<tr>
<td>Detector Voltage</td>
<td>920 VDC</td>
</tr>
<tr>
<td>Audio</td>
<td>Panel mounted speaker</td>
</tr>
<tr>
<td></td>
<td>85 dBA min</td>
</tr>
<tr>
<td>Power</td>
<td>2 - “D” cells</td>
</tr>
<tr>
<td></td>
<td>1 – “9v” battery</td>
</tr>
<tr>
<td>Connectors</td>
<td>Model 3020 headset</td>
</tr>
<tr>
<td>Case</td>
<td>Aluminum body & cover</td>
</tr>
<tr>
<td>Finish</td>
<td>Polyurethane enamel</td>
</tr>
<tr>
<td>Controls</td>
<td>4 position selector switch</td>
</tr>
<tr>
<td></td>
<td>(Off, x1, x10, x100)</td>
</tr>
<tr>
<td>Weight</td>
<td>3.9 lbs (1.8 kg)</td>
</tr>
<tr>
<td>Width</td>
<td>4.38" (111 mm)</td>
</tr>
<tr>
<td>Length</td>
<td>8.75" (222 mm)</td>
</tr>
<tr>
<td>Height</td>
<td>4.25" (109 mm)</td>
</tr>
</tbody>
</table>

Adjustable carrying strap is Included

The 3009A has individual calibration controls for each range
Equipped with a speaker which can be turned off, provides clicks that are in proportion to the radiation field intensity